Weighted Composition Operators Between Different Fock Spaces
نویسندگان
چکیده
منابع مشابه
Weighted Composition Operators between different Bloch-type Spaces in Polydisk
Let φ(z) = (φ 1 (z),. .. , φ n (z)) be a holomorphic self-map of U n and ψ(z) a holomorphic function on U n , where U n is the unit polydisk of C n. Let p ≥ 0, q ≥ 0, this paper gives some necessary and sufficient conditions for the weighted composition operator W ψ,φ induced by ψ and φ to be bounded and compact between p-Bloch space B p (U n) and q-Bloch space B q (U n).
متن کاملWeighted Composition Operators between Bergman-type Spaces
In this paper, we characterize the boundedness and compactness of weighted composition operators ψCφf = ψfoφ acting between Bergman-type spaces.
متن کاملWeighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2018
ISSN: 0926-2601,1572-929X
DOI: 10.1007/s11118-017-9678-y